A coordinate plane is a plane that is divided into four regions by a horizontal line (x-axis) and a vertical line (y-axis). The location, or coordinates, of a point are given by an ordered pair (x, y).

Midpoint Formula The midpoint M of \overline{AB} with endpoints $A(\hat{x}_1, y_1)$ and $B(x_2, y_2)^{-y_2}$

Example 1: Find the coordinates of the midpoint of \overline{PQ} with endpoints P(-8,3) and Q(-2,7).

$$M = \left(\frac{-8 + (-2)}{2}, \frac{3 + 7}{2}\right) = \left(\frac{-10}{2}, \frac{10}{2}\right) = \left(-5, 5\right)$$

Example 2: M is the midpoint of \overline{XY} . X has coordinates (2, 7) and M has coordinates (6, 1). Find the

coordinates of Y. (2 METHODS)

$$(6,1) = \left(\frac{x+2}{2}, \frac{y+7}{2}\right)$$

$$6 = \frac{x+2}{2} \qquad 1 = \frac{y+7}{2}$$

$$12 = x+2 \qquad 2 = y+7$$

$$x = 10 \qquad (10,-5) \qquad y = -5$$

Distance Formula

In a coordinate plane, the distance d between two points (x_1, y_1) and (x_2, y_2) is $d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}.$

- You can also use the Pythagorean Theorem to find the distance between two points in a coordinate plane.
- In a right triangle, the two sides that form the right angle are the <u>legs</u>. The side across from the right angle that stretches from one leg to the other is the <u>hypotenuse</u>. In the diagram, a and b are the lengths of the shorter sides, or legs, of the right triangle. The longest side is called the hypotenuse and has length c.

Theorem 1-6-1 (Pythagorean Theorem

In a right triangle, the sum of the squares of the lengths of the *legs* is equal to the square of the length of the *hypotenuse*.

$$a^2 + b^2 = c^2$$

Example 4: Use the Distance Formula and the Pythagorean Theorem to find the distance, to the nearest tenth, from D(3,4) to E(-2,-5).

$$d = \sqrt{(3-(-2))^2+(4-(-5))^2}$$

$$d = \sqrt{5^2+9^2}$$

$$d = \sqrt{25 + 81}$$
 $d = \sqrt{10b} \approx 10.3$

horiz. vart.

$$\chi^2 + y^2 = d^2$$

 $5^2 + 9^2 = d^2$
 $25 + 81 = d^2$
 $10b = d^2$
 $d \approx 10.3$

Example 5: A player throws the ball from first base to a point located between third base and home plate and 10 feet from third base. What is the distance of the throw, to the nearest tenth?

$$d = \sqrt{(90-0)^2 + (0-80)^2}$$

$$d = \sqrt{90^2 + (-80)^2}$$

$$d = \sqrt{81000 + 10400}$$

$$d = \sqrt{14.5000}$$

$$Ed \approx 120.4 \text{ fect}$$