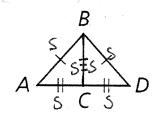
Period

Triangle Congruence: SSS, SAS, ASA, AAS, HL

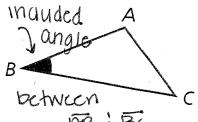
1. Side-Side-Side Congruence Postulate


Triangle Rigidity: If the side lengths of a triangle are given, then the triangle can have only one shape.

Postulate 4-4-1 Side-Side (SSS) Congruence		
POSTULATE	HYPOTHESIS	CONCLUSION
If three sides of one triangle are congruent to three sides of another triangle, then the triangles are congruent.	4 cm 5 6 cm 6 cm 7 cm 6 cm 7 cm	△ABC ≅ △FDE

Example: Use SSS to explain why $\triangle ABC \cong \triangle DBC$.

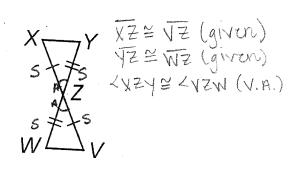
What property would we be using to prove that $\overline{BC} \cong \overline{BC}$?


Reflexive Property to prove BC≅BC It is a shared side!

AB & BD (given)
AC & DC (given)
BC & BC (REHEX.)

II. Side-Angle-Side Congruence Postulate (SAS)

Included Angle: An angle formed by two adjacent sides of a polygon.

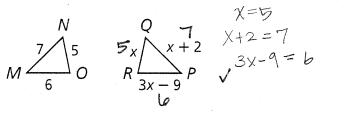

Postulate 4-4-2 Side-A	ngle-Side (SAS) Congruence	
POSTULATE	HYPOTHESIS	CONCLUSION
If two sides and the included angle of one triangle are congruent to two sides and the included angle of another triangle, then the triangles are congruent.	AAA S C S B F	△ABC ≅ △EFD

Example: The diagram shows part of the support structure for a tower. Use SAS to explain why $\Delta XYZ \cong \Delta VWZ$.

<XZY ≅ < VZW

because they are Vertical

ongles!
</pre>



III. Verifying Triangle Congruence

Example: Show that the triangles are congruent for the given value of the variable.

a. \triangle MNO \cong \triangle PQR when x = 5.

b. $\triangle STU \cong \triangle VWX$ when y = 4.

(all sides are congruent!)

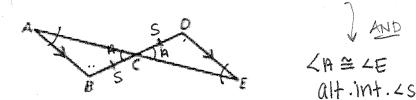
SAS (two sides : the included angle our congruent)

IV. Angle-Side-Angle Congruence (ASA)

<u>Included Side</u>: the common side of two consecutive angles in a polygon.

 \overline{PQ} is the included side of $\angle P$ and $\angle Q$.

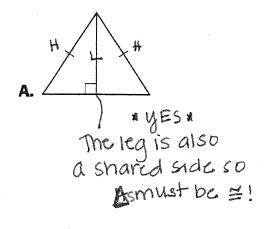
ostulate 4-5-1 Angle-Si	de-Angle (ASA) Congruence	
POSTULATE	HYPOTHESIS	CONCLUSION
If two angles and the included side of one triangle are congruent to two angles and the included side of another triangle, then the triangles are congruent.	DA SAF	△ A BC ≅ △ D EF


Example: Determine if you can use ASA to prove the triangles congruent. Explain.

No, they snare a side, but It isn't the included side!

V. Angle-Angle-Side Congruence (AAS)

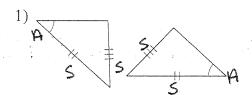
THEOREM	HYPOTHESIS	CONCLUSION
If two angles and a nonincluded side of one triangle are congruent to the corresponding angles and nonincluded side of another triangle, then the triangles are congruent.	H S A	△GHJ ≅ △KLM


Example: Given the figure below, state the piece of information you would use to prove that the triangles are congruent using AAS. $\angle ACB \cong \angle ECD (\lor A.)$

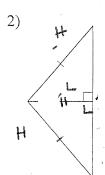
VI. Hypotenuse-Leg Congruence (HL)

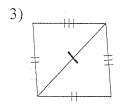
n eorem 4-5-3 Hypotenus	e	
THEOREM	HYPOTHESIS	CONCLUSION
If the <u>hypotenuse</u> and a leg of a right triangle are congruent to the <u>hypotenuse</u> and a leg of another right triangle, then the triangles are congruent.	B C D	$\triangle ABC \cong \triangle DEF$

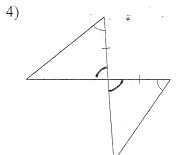
<u>Example</u>: Determine if you can use the HL Congruence Theorem to prove the triangles congruent. If not, tell what else you need to know.

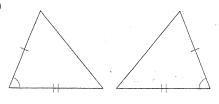

* No x Don't know it the hypotenuse is congruent.

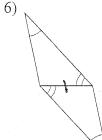
* NO Anglo-Side Postulato! *


Notes - Sections 4.4 and 4.5 (Examples)

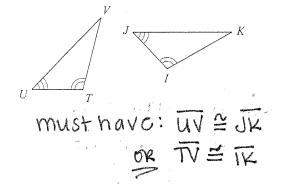

Period Date


State if the two triangles are congruent. If they are, state how you know.

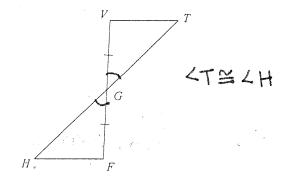

MO Postulate doesn't exist!



5)

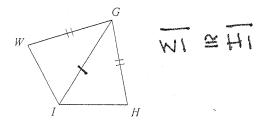


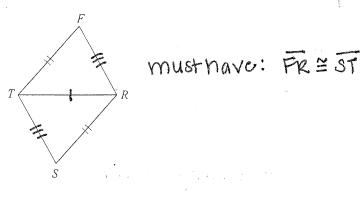
2 sides and the of one D are congruent to 2 sides and the included angle of the other A.

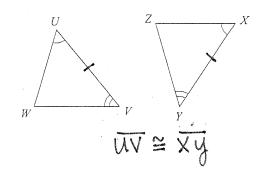


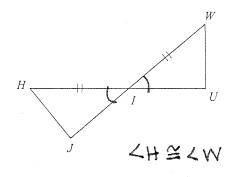
State what additional information is required in order to know that the triangles are congruent for the reason given.

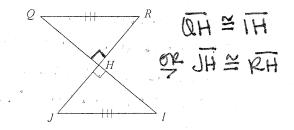

7) AAS


9) AAS


11) HL


13) SSS


8) SSS


10) ASA

12) ASA

14) HL

