G	IB	B	S	FR	EE	EN	ER	GY

No	~~	e				
	ull				 	

For a reaction to be spontaneous, the sign of ΔG (Gibbs Free Energy) must be negative. The mathematical formula for this value is:

$$\Delta G = \Delta H - T \Delta S$$

where ΔH = change in enthalpy or heat of reaction

T = temperature in Kelvin

 Δ \$ = change in entropy or randomness

Complete the table for the sign of ΔG ; +, – or undetermined. When conditions allow for an undetermined sign of ΔG , temperature will decide spontaneity.

ΔH ΔS ΔG
- +
+ -
- - +
+ + +

Answer the questions below.

- The conditions in which ΔG is always
 negative is when ΔH is
 and ΔS is ______.
- 2. The conditions in which ΔG is always positive is when ΔH is _____ and ΔS is _____.
- 3. When the situation is indeterminate, a low temperature favors the (entropy / enthalpy) factor, and a high temperature favors the (entropy / enthalpy) factor.

Answer Problems 4-6 with always, sometimes or never.

- 4. The reaction: $Na(OH)_s \rightarrow Na+(aq) + OH^-(aq) + energy will$ be spontaneous.
- 5. The reaction: energy + $2H_2(g)$ + $O_2(g)$ \rightarrow $2H_2O$ (1) will _______ be spontaneous.
- 6. The reaction: energy + $H_2O(s) \rightarrow H_2O(l)$ will _______ be spontaneous.
- 7. What is the value of ΔG if $\Delta H = -32.0$ kJ, $\Delta S = +25.0$ kJ/K and T = 293 K?
- 8. Is the reaction in Problem 7 spontaneous? _____
- 9. What is the value of ΔG if $\Delta H = +12.0$ kJ, $\Delta S = -5.00$ kJ/K and T = 290. K?
- 10. Is the reaction in Problem 9 spontaneous?

Potential Energy Diagram

Use the graph below to answer the questions at the bottom.

Reaction Progress

- 1. Does this graph show an exothermic or endothermic reaction? How do you know?
- 2. Label the following letters:
 - A. _____
 - B. _____
 - C. _____
- 3. If a catalyst was added, what letter on the graph would change? How would it change?
- 4. How does this apply to the collision theory?