Coding for Protein

How to read an RNA codon to code for an amino acid and build a polypeptide chain. The START codon or AUG for MET or methionine begins the process of Translation and it continues until a STOP codon is reached. The code has been presented in two different ways but both give you the same result. Choose which works best for you to read and use.

A **TATA box** is a DNA **sequence** that indicates where a **genetic sequence** can be read and decoded. ... Proteins called transcription factors can bind to the **TATA box** and recruit an enzyme called RNA polymerase, which synthesizes RNA from DNA.

Single uncoiled DNA STRAND. Draw the mRNA made from this strand of DNA

PROMOTER

DNA CCCAGGGATATAGTTATTACCATGCCCTCACTGGGCCCCGCTAAGGC

RNA

Same strand continues on second line

DNA AAAAACAATGAACTCTTTCTTACACACGGGGGCCTCACGCGCCCAUU

RNA

Find the START CODON and rewrite the mRNA from START to END codon

mRNA

Read the CODONS in the mRNA to determine which amino acids to link together into a polypeptide chain

Amino acids

non-polar, aliphatic residues

Glycine	Gly	G	н ₂ Nон	GGU GGC GGA GGG
Alanine	Ala	Α	н ₃ с	GCU GCC GCA GCG
Valine	Val	V	н ₃ с	GUU GUC GUA GUG
Leucine	Leu	L	H ₃ C	UUA UUG CUU CUC CUA CUG
Isoleucine	Ile	I	H ₃ C CH ₃ O OH	AUU AUC AUA
Proline	Pro	Р	Н	CCU CCC CCA CCG

aromatic residues

polar, non-charged residues

Serine Ser S HO
$$\stackrel{\downarrow}{NH_2}$$
 HO $\stackrel{\downarrow}{NH_2}$ ACU ACC ACA ACG ACA ACG

Threonine Thr T HO $\stackrel{\downarrow}{NH_2}$ OH ACU ACC ACA ACG

Cysteine Cys C $\stackrel{\downarrow}{NH_2}$ OH UGU UGC

Methionine Met M $\stackrel{\downarrow}{H_3}$ OH AUG

Asparagine Asn N $\stackrel{\downarrow}{H_2}$ OH AAU AAC

Glutamine Gln Q $\stackrel{\downarrow}{NH_2}$ OH CAA CAG

positively charged residues

negatively charged residues