Chemistry

Standard #10- Convert number of particles, grams, and liters of gas to moles and calculate the percent composition of an element in a compound.

Chapter 10: Chemical Quantities

- Measuring matter- grams and moles
- Mole-mass-volume relationships
- o STP
- o Percent composition
- Empirical formula vs molecular formula

Journal Work

- \circ $\;$ Define the **vocabulary terms** from the chapter in your journal.
- Read each section and answer the Section Assessment and Chapter
 Assessment questions in the chapter (#1-105) odds in your journal. Selfcheck answers with key in the back of book.
- Answer the following questions in hand-written paragraph format in journal
 - What is the historical significance of the mole concept and how was it determined?
- Read and Summarize a current article related to one of the major topics found in the chapter. Attach a copy of the article to your written summary in your journal.

	Assessment	Teacher Initials	Score	Date
1.	Show completed journal .			
	 Vocabulary 			
	 Questions 			
	 Paragraphs 			
	 Article Summary 			
2.	Take and pass the exam .			
3.	After passing the exam, do the lab work Lab 9: Molecular mass of a gas (handout)			

You have completed Standard #10

Chemistry

Standard #10- Convert number of particles, grams, and liters of gas to moles and calculate the percent composition of an element in a compound.

Chapter 10: Chemical Quantities

- Measuring matter- grams and moles
- Mole-mass-volume relationships
- o STP
- Percent composition
- o Empirical formula vs molecular formula

Journal Work

- Define the **vocabulary terms** from the chapter in your journal.
- Read each section and answer the Section Assessment and Chapter Assessment questions in the chapter (#1-105) odds in your journal. Selfcheck answers with key in the back of book.
- Answer the following questions in hand-written paragraph format in journal
 - What is the historical significance of the mole concept and how was it determined?
- Read and Summarize a current article related to one of the major topics found in the chapter. Attach a copy of the article to your written summary in your journal.

	Assessment	Teacher Initials	Score	Date
2.	Show completed journal. • Vocabulary • Questions			
4.	 Paragraphs Article Summary Take and pass the exam. 			
4.				
5.	After passing the exam, do the lab work Lab 9: Molecular mass of a gas (handout)			

You have completed Standard #10