Thermal Energy and Heat

Name _

_____ Date __

Thermal Energy and Heat • Adapted Reading and Study

Temperature, Thermal Energy, and Heat (pages 176–181)

Temperature (pages 176–178)

Key Concept: The three common scales for measuring temperature are the Fahrenheit, Celsius, and Kelvin scales.

- All objects are made up of tiny particles. **Temperature** tells how quickly the particles in an object are moving.
- The particles in a warm object move quickly. The object has a high temperature. The particles in a cool object move slowly. The object has a low temperature.
- A thermometer measures temperature. A thermometer contains liquid. The level of the liquid tells the temperature.
- There are three temperature scales that are commonly used. On the Fahrenheit scale, water freezes at 32°F and boils at 212°F. On the Celsius scale, water freezes at 0°C and boils at 100°C. On the Kelvin scale, water freezes at 273 K and boils at 373 K.

Answer the following questions. Use your textbook and the ideas above.

- A measure of how quickly the particles in an object are moving is ______.
- 2. Which of these has the fastest-moving particles?
 - a. an ice cube
 - **b.** a cup of cold water
 - c. a mug of boiling water

N	а	m	ne
IN	a		IE.

Thermal Energy and Heat • Adapted Reading and Study

3. A tool used to measure temperature is an(an)

_ •

_

4. Read the words in the box. Use the words to fill in the blanks in the table about temperature scales.

Temperature				
Scale	Water Freezes	Water Boils		
a	273	373		
b	0°C	100°C		
C	32°F	212°F		

5. Is the following sentence true or false? The particles in a cool object move more quickly than the particles in a warm object.

Thermal Energy and Heat • Adapted Reading and Study

Thermal Energy and Heat (pages 178–179)

Key Concept: Heat is thermal energy moving from a warmer object to a cooler object.

- Thermal energy is the total energy of all the particles in an object.
- Thermal energy depends on how fast the particles are moving. Thermal energy also depends on how many particles there are. That is why a liter of hot water has more thermal energy than a drop of water at the same temperature.
- **Heat** is moving thermal energy. Heat always moves from a warmer object to a cooler object.

Answer the following questions. Use your textbook and the ideas above.

- **6.** Circle the letters of two things that determine how much thermal energy an object has.
 - **a.** how many particles it has
 - b. which temperature scale is used
 - c. how fast its particles are moving
- Thermal energy that moves from a warmer object to a cooler object is called _____.
- 8. Draw arrows in the picture to show in which direction heat moves.

© Pearson Education, Inc., publishing as Pearson Prentice Hall. All rights reserved.

Thermal Energy and Heat • Adapted Reading and Study

Specific Heat (pages 180–181)

Key Concept: A material with a high specific heat can absorb a great deal of thermal energy without a great change in temperature.

- When an object is heated, its temperature rises. How much its temperature rises depends on its specific heat.
- **Specific heat** is the amount of energy needed to raise the temperature of 1 kilogram of a material by 1 kelvin.
- Different materials have different specific heats. Water has a high specific heat. It takes a lot of energy to raise the temperature of water. Silver has a low specific heat. It does not take much energy to raise the temperature of silver.

Answer the following question. Use your textbook and the ideas above.

9. Use the table to answer the question. If one kilogram of each of these materials absorbed the same amount of energy, which material would have the biggest change

in temperature?

Specific Heat of Some Materials			
Material	Specific Heat (J/ kg⋅K)		
Glass	837		
Iron	450		
Sand	800		

© Pearson Education, Inc., publishing as Pearson Prentice Hall. All rights reserved.