Beginning in the first cell, find the answer. Hunt for your answer, mark that cell \#2 and find the next answer. Proceed in this manner until you complete the circuit. NO TECHNOLOGY IS ALLOWED!

\#__1 \qquad Answer: -12 Find the slope of the tangent line to the equation at the x location specified. $y=x^{2}-2 x \text { at } x=0$	\# \qquad Answer: -92 A particle moves along the x-axis so that its position at any time $t \geq 0$ is given by the function $x(t)=t^{3}-10 t+2$, where x is measured in feet and t is measured in seconds. Find the displacement during the first 2 seconds.
\# \qquad Answer: 5 (Refer to Figure 2) At what time does the particle begin to move right?	\# \qquad Answer: -1/2 (Refer to Figure 2) What is the acceleration of the particle on the interval $4<t<7$?
\qquad Answer: 1 Find the derivative of the function at the x location specified. $y=\frac{x}{3 x-1} \text { at } x=0$	\# \qquad Answer: 3 (Refer to Figure 2) Find the $2^{\text {nd }}$ point on the graph at which the particle's speed increases in the positive direction.
\# \qquad Answer: -15 (Refer to Figure 2) Find the $1^{\text {st }}$ point on the graph at which the particle's speed is increasing.	\# \qquad Answer: -2 Find the slope of the tangent line to the equation at the x location specified. $y=3 x^{3}-4 x^{2} \text { at } x=1$
\# \qquad Answer: 4 Find the slope of the tangent line to the equation at the x location specified. $y=x^{2}\left(3 x+\frac{1}{x^{3}}\right) \text { at } x=\frac{1}{3}$	\# \qquad Answer: -8 Find the derivative of the function at the x location specified. $y=\frac{1}{\sqrt{x}} \text { at } x=1$

\#_____ Answer: 0 (Refer to Figure 3): Find the average acceleration of the rocket over the time interval $0 \leq t \leq 80$ seconds.	\#____Answer: 2 (Refer to Figure 1) At what value of t does the bug change direction?

*I made this up. ©
Figure 1: A bug begins to crawl up a vertical wire at time $t=0$. The velocity, v, of the bug at time $t, 0 \leq$ $t \leq 8$, is given by the function whose graph is shown below.

Figure 2: The figure graphed below shows the velocity of a particle moving along a coordinate line.

Figure 3: The Saturn VII rocket is launched upward from an initial height of 0 feet at time $t=0$. The velocity of the rocket is recorded for several selected values of t over the interval $0 \leq t \leq 80$ seconds as shown in the table below.

t (sec)	0	10	20	30	40	50	60	70	80
$v(t)$ $(\mathrm{ft} / \mathrm{sec})$	9	14	22	29	35	40	44	47	49

