Beginning in the first cell, find the answer. Hunt for your answer, mark that cell #2 and find the next answer. Proceed in this manner until you complete the circuit. NO TECHNOLOGY IS ALLOWED!

#_1 Answer: -12	# Answer: -92
Find the slope of the tangent line to the equation at the <i>x</i> location specified. $y = x^2 - 2x$ at $x = 0$	A particle moves along the <i>x</i> -axis so that its position at any time $t \ge 0$ is given by the function $x(t) = t^3 - 10t + 2$, where <i>x</i> is measured in feet and <i>t</i> is measured in seconds. Find the displacement during the first 2 seconds.
# Answer: 5	# Answer: -1/2
(Refer to Figure 2) At what time does the particle begin to move right?	(Refer to Figure 2) What is the acceleration of the particle on the interval $4 < t < 7$?
# Answer: 1	# Answer: 3
Find the derivative of the function at the <i>x</i> location specified. $y = \frac{x}{3x-1} \text{ at } x = 0$	(Refer to Figure 2) Find the 2 nd point on the graph at which the particle's speed increases in the positive direction.
# Answer: -15	# Answer: -2
(Refer to Figure 2) Find the 1 st point on the graph at which the particle's speed is increasing.	Find the slope of the tangent line to the equation at the <i>x</i> location specified. $y = 3x^3 - 4x^2$ at $x = 1$
# Answer: 4	# Answer: -8
Find the slope of the tangent line to the equation at the <i>x</i> location specified. $y = x^2(3x + \frac{1}{x^3}) \text{ at } x = \frac{1}{3}$	Find the derivative of the function at the <i>x</i> location specified. $y = \frac{1}{\sqrt{x}} \text{ at } x = 1$

# Answer: 0	# Answer: 2
(Refer to Figure 3): Find the average acceleration of the rocket over the time interval $0 \le t \le 80$ seconds.	(Refer to Figure 1) At what value of <i>t</i> does the bug change direction?
# Answer: 17	# Answer: 7
(Refer to Figure 1) At what time does the bug begin to move at a constant rate?	(Refer to Figure 3): Find an estimate for the acceleration at $t = 35$ seconds.
# Answer: 3/5	# Answer: -1
The position of a particle on the x-axis is given by $x(t) = -5t^2$. What is the average velocity for $0 \le t \le 3$?	A particle moves along the <i>x</i> -axis so that its position at any time $t \ge 0$ is given by the function $x(t) = t^3 - 10t + 2$, where <i>x</i> is measured in feet and <i>t</i> is measured in seconds. Find the instantaneous velocity at $t = 3$ seconds.
# Answer: 1/2	#Answer: -2/3
A particle moves along the <i>x</i> -axis so that its position at any time $t \ge 0$ is given by the function $x(t) = \frac{1}{4}t^4 - 64t + 2$, where <i>x</i> is measured in feet and <i>t</i> is measured in seconds. At what value does the particle change direction?	*In a scene from "The Martian" Matt Damon shoots a flare straight up into the sky. The height (in feet) of the flare after t seconds is given by $s(t) = -3t^2 + 100t + 3$ What is the velocity of the flare when it is moving toward the ground and its position is equal to 131 feet?

*I made this up. \odot

Figure 1: A bug begins to crawl up a vertical wire at time t = 0. The velocity, v, of the bug at time $t, 0 \le t \le 8$, is given by the function whose graph is shown below.

Figure 2: The figure graphed below shows the velocity of a particle moving along a coordinate line.

Figure 3: The Saturn VII rocket is launched upward from an initial height of 0 feet at time t = 0. The velocity of the rocket is recorded for several selected values of t over the interval $0 \le t \le 80$ seconds as shown in the table below.

t (sec)	0	10	20	30	40	50	60	70	80
v(t) (ft/sec)	9	14	22	29	35	40	44	47	49